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Concerning the Numerical Solution 
of Differential Equations 

By H. P. Decell, Jr.,t L. F. Guseman, Jr.t and R. N. Leat 

Introduction. The stability region of a given difference equation, to be used in 
the numerical solution of a differential equation x' = f(x, t), is a function of the 
step size h and the partial derivative af/Ox. Higher order methods usually have very 
small stability regions and thus require very small step sizes. A method for in- 
creasing the step size, without violating the stability region constraints, will be 
developed in the text. The stability region of the difference equation is an interval 
[a, b] such that, whenever h = h af/lx lies in the interval, the difference equation 
yields a stable solution of x' = f(x, t) [1], [2]. The size of af/lx and h dictate the size 
of h. 

The Method. Suppose we desire to numerically integrate 

(1) x' = f(x, t), x(to) = a. 

Stability considerations depend on af(x, t)/lx. We show that an alternate differential 
equation 

(2) y= k(y, t), y(to) = a 

may be developed such that numerical integration of (2) may be more favorable 
than that of (1) in view of the comparative magnitudes of af(x, t)/Ox and 
ak(y, t)/Oy, and further, the solution of (1) may be written as 

(3) x = - 4y(t), t]. 

We proceed to determine the functions 4 and k. Consider (1) in the form 

(4) x' g(x, t) + h(x, t), h(x, t) = f(x, t) - g(x, t) 

and suppose that the solution of 

(5) z = g(z, t), z(to) = a 

is known analytically. Let us write this solution in the form 

(6) z = 4)(a, t). 

This function has the property that O(a, to) = a for all a. Let us consider the func- 
tion 0(y(t), t). Now 

(7) do (y, t) _ ao4(y, t) dy + ao4(y, t) -O(y, t) dy + 
dt GI y dt at a +dt (, ) ) 

We determine y so that x = 0(y, t). Thus 

(8) d (y t) = g(O(y, t), t) + h(c(y, t), t) = a4 (y, t) dy + g(c(y, t), t) 
dt ay dt 
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by (7) and (4), so that 

(9) dy a [(y,t)]' If()(y, t), t) - g(4(y, t), t)], y(to) = a. 

The latter boundary condition appears from (1) and the special properties of X, 
that is 

(10) 4(y(to), to) = y(to) = x(to) = a. 

The basic idea in this type of construction is that ay'/ay may be much smaller 
than ax'/lx. This would allow the choice of a larger step size in the numerical 
solution of Eq. (1) with the given difference equation, without violating the con- 
straints of the stability region. The size of ay'/ay will certainly depend upon the 
choice of the function g(x, t). It might also be noted that, if 0(y, t) is a linear func- 
tion of y, then 

Oy' a f(x, t) _ ag(x, t) 
ay GAx Ax 

It should additionally be noted that, in obtaining from 0(y, t) the solution of x' = 

f(x, t), x(to) = a, there is a possibility of amplifying numerical integration errors 
due to the nature of 0(y, t). 

TABLE 1 

h = .0005 

t Direct Alternate 

.0000 0 0 

.0080 0 - .40 X 10-15 

.4505 .10 X 10-1O - .38 X 10-13 

.9505 .98 X 10-14 - .97 X 10-13 
1.4505 .99 X 10-14 - .97 X 10-13 
1.9505 .53 X 10-14 - .98 X 10-13 
2.4505 .83 X 10-14 - .97 X 10-13 
2.9505 .12 X 10-13 - .95 X 10-13 
3.4505 .37 X 10-14 - .98 X 10-13 
4.0050 .58 X 10-14 - .93 X 10-13 

TABLE 2 
h = .006 

Direct Alternate 

.0000 0 0 

.0096 - .33 X 10-15 - .44 X 10-15 

.5406 - .23 X 10-9 - .62 X 10-14 
1.1406 - .10 X 10-2 - .90 X 10-13 
1.6806 - .98 X 103 - .10 X 10-12 
2.3406 - .20 X 1011 - .98 X 10-13 
2.9406 - .86 X 1017 - .10 X 10-12 
3.5406 - .38 X 1024 - .98 X 10-13 
4.0206 - .77 X 1029 - .10 X 10-12 
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TABLE 3 
h = .01 

t Direct Alternate 

.0000 0 0 

.1600 .66 X 10-15 - .95 X 10-16 

.6500 - .15 X 10-9 - .52 X 10-15 
1.1500 .73 X 103 .28 X 10-15 
1.6500 .97 X 1011 - .17 X 10-13 
2.1500 - .65 X 1022 - .17 X 10-13 
2.6500 - .51 X 1031 - .23 X 10-13 
3.1500 - .44 X 1036 - .22 X 10-13 
3.6500 - .27 X 1036 - .23 X 10-13 
4.1500 - .16 X 1036 - .32 X 10-13 

TABLE 4 
h = .1 

Direct Alternate 

.0000 0 0 
1.0000 .24 X 10-13 - .59 X 10-3 
2.0000 .16 X 10-11 - .73 X 10-3 

2.4000 - .91 X 10-9 - .736612 X 10-3 

2.8000 .79 X 10-7 - .736612 X 10-3 

3.2000 .46 X 10-4 - .736612 X 10-3 

3.6000 - .12 X 10'I - .736612 X 10-3 
4.0000 .90 X 10-2 - .736612 X 10-3 

4.1000 .12 X 102 - .736612 X 10-3 

Note that in Table 4 we begin to see the effects of truncation errors in the 
alternate solution. 

Application. Whenever it is desirable to use higher order methods to control 
truncation error in the numerical solution of x' = f(x, t), x(to) = a, a small stability 
region may force the use of an unreasonably small step size. The use of an alternate 
equation may allow the choice of a larger step size. Consider the differential equa- 
tion 

x' =f(x, t) = 15et- 14x, x(0) = 1 

whose solution is x et. Thus, with g(x, t) = - 14x, it follows that 

4(y t) ==ye-14 

and 

dy= 5e 15t y(O) 1. 

In this case, =yflay 0 so that the only limitation in choosing h is that of trunca- 
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tion errors of the difference method. Moreover, any error introduced in the nuinerical 
solution of y' 15 exp [15t] will be damped by exp [- 14t] in the substitution 
into (y, t) = y exp [-14t]. 

Tables 1, 2, 3, and 4 give comparisons of relative errors in the numerical solu- 
tion of x' 15et - 14x obtained by direct integration, versus the solution obtained 
by using the alternate equationi. The method used is Adams-Bashforth 16th order 
predictor and Adams-Moulton 15th order corrector. The region of numerical 
stability (for one application of the corrector) is -.007 < h ? .011. The tables 
display results using step sizes that caused h to lie both inside (Table 1) and outside 
(Tables 2, 3, 4) of the stability region for the direct integration. All integrations 
connected with the solution using the altemate equation are within the stability 
region. 
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Some Fourth Order Multipoint Iterative Methods 
for Solving Equations 

By P. Jarratt 

1. Introduction. Multipoint iterative methods find new approximations to a 
zero of a function f(x) by sampling f and sometimes its derivatives at each itera- 
tion at a number of values of x. Although they have not been much used in practice, 
one interesting class of formulae, investigated by Traub [1, pp. 197-204] is computa- 
tionally attractive in problems where the evaluation of f'(x) is rapid compared with 
f(x). Such cases arise, for example, whenf(x) is defined by an integral. Traub showed 
that for iterative formulae of the type 

Xn+= Xn- awi(xn) - a2w2(xn) where 
( 1. 1) Wi(X) =f(x)/f(x), W2(X) = f(x) 

f'[x + axwi(x)]' 

third order processes costing one evaluation of f(x) and two of f'(x) per iteration 
could be constructed by suitable choices of the parameters al, a2 and a. It was not 
possible, however, to obtain fourth order formulae without increasing the number 
of derivative evaluations. In this paper, a class of iterative methods of the form 
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